Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Adv Biol (Weinh) ; 8(5): e2300117, 2024 May.
Article in English | MEDLINE | ID: mdl-38379270

ABSTRACT

The incidence of Hepatocellular carcinoma (HCC) and HCC-related deaths have remarkably increased over the recent decades. It has been reported that ß-catenin activation can be frequently observed in HCC cases. This study identified the integrin-linked kinase-associated phosphatase (ILKAP) as a novel ß-catenin-interacting protein. ILKAP is localized both in the nucleus and cytoplasm and regulates the WNT pathway in different ways. First, it is demonstrated that ILKAP activates the WNT pathway in HCC cells by increasing the protein level of ß-catenin and other proteins associated with the WNT signaling, such as c-Myc and CyclinD1. Next, it is shown that ILKAP promotes the metastasis of HCC both in vitro and in vivo in a zebrafish xenograft model. It is also found that ILKAP dephosphorylates the GSK3ß and CK1, contributing to the reduced ubiquitination of ß-catenin. Furthermore, it is identified that ILKAP functions by mediating binding between TCF4 and ß-catenin to enhance expression of WNT target genes. Taken together, the study demonstrates a critical function of ILKAP in metastasis of HCC, since ILKAP is crucial for the activation of the WNT pathway via stabilization of ß-catenin and increased binding between TCF4 and ß-catenin.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Wnt Signaling Pathway , Zebrafish , beta Catenin , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , beta Catenin/metabolism , Humans , Wnt Signaling Pathway/physiology , Animals , Cell Line, Tumor , Neoplasm Metastasis , Transcription Factor 4/metabolism , Transcription Factor 4/genetics , Gene Expression Regulation, Neoplastic
2.
Autophagy ; 20(2): 454-456, 2024 02.
Article in English | MEDLINE | ID: mdl-37876308

ABSTRACT

Macroautophagy/autophagy is an essential pro-survival mechanism activated in response to nutrient deficiency. The proper fusion between autophagosomes and lysosomes is a critical step for autophagic degradation. We recently reported that RUNDC1 (RUN domain containing 1) inhibits autolysosome formation via clasping the ATG14-STX17-SNAP29 complex to hinder VAMP8 binding. We showed that RUNDC1 colocalizes with LC3 and associates with mature autophagosomes in cell lines and the zebrafish model. We utilized liposome fusion and in vitro autophagosome-lysosome fusion assays to demonstrate that RUNDC1 inhibits autolysosome formation. Moreover, we found that RUNDC1 clasps the ATG14-STX17-SNAP29 complex via stimulating ATG14 homo-oligomerization to inhibit ATG14 dissociation, which in turn prevents VAMP8 from binding to STX17-SNAP29. Our results demonstrate that RUNDC1 is a negative regulator of autophagy that restricts autophagosome fusion with lysosomes and is crucial for zebrafish survival in nutrient-deficient conditions. Here, we summarize our findings and discuss their implications for our understanding of autophagy regulation.


Subject(s)
Autophagosomes , Autophagy , Animals , Autophagosomes/metabolism , Autophagy/physiology , Zebrafish/metabolism , Transcription Factors/metabolism , Lysosomes/metabolism , Membrane Fusion/physiology , SNARE Proteins/metabolism
3.
Dis Model Mech ; 17(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38131137

ABSTRACT

Shigella flexneri is a human-adapted pathovar of Escherichia coli that can invade the intestinal epithelium, causing inflammation and bacillary dysentery. Although an important human pathogen, the host response to S. flexneri has not been fully described. Zebrafish larvae represent a valuable model for studying human infections in vivo. Here, we use a Shigella-zebrafish infection model to generate mRNA expression profiles of host response to Shigella infection at the whole-animal level. Immune response-related processes dominate the signature of early Shigella infection (6 h post-infection). Consistent with its clearance from the host, the signature of late Shigella infection (24 h post-infection) is significantly changed, and only a small set of immune-related genes remain differentially expressed, including acod1 and gpr84. Using mutant lines generated by ENU, CRISPR mutagenesis and F0 crispants, we show that acod1- and gpr84-deficient larvae are more susceptible to Shigella infection. Together, these results highlight the power of zebrafish to model infection by bacterial pathogens and reveal the mRNA expression of the early (acutely infected) and late (clearing) host response to Shigella infection.


Subject(s)
Dysentery, Bacillary , Animals , Humans , Dysentery, Bacillary/genetics , Shigella flexneri/genetics , Shigella flexneri/metabolism , Zebrafish/genetics , Zebrafish/microbiology , Inflammation/microbiology , RNA, Messenger/genetics , RNA, Messenger/metabolism
4.
Cell Death Differ ; 30(10): 2231-2248, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37684417

ABSTRACT

Autophagy serves as a pro-survival mechanism for a cell or a whole organism to cope with nutrient stress. Our understanding of the molecular regulation of this fusion event remains incomplete. Here, we identified RUNDC1 as a novel ATG14-interacting protein, which is highly conserved across vertebrates, including zebrafish and humans. By gain and loss of function studies, we demonstrate that RUNDC1 negatively modulates autophagy by blocking fusion between autophagosomes and lysosomes via inhibiting the assembly of the STX17-SNAP29-VAMP8 complex both in human cells and the zebrafish model. Moreover, RUNDC1 clasps the ATG14-STX17-SNAP29 complex via stimulating ATG14 homo-oligomerization to inhibit ATG14 dissociation. This also prevents VAMP8 from binding to STX17-SNAP29. We further identified that phosphorylation of RUNDC1 Ser379 is crucial to inhibit the assembly of the STX17-SNAP29-VAMP8 complex via promoting ATG14 homo-oligomerization. In line with our findings, RunDC1 is crucial for zebrafish in their response to nutrient-deficient conditions. Taken together, our findings demonstrate that RUNDC1 is a negative regulator of autophagy that restricts autophagosome fusion with lysosomes by clasping the ATG14-STX17-SNAP29 complex to hinder VAMP8 binding.

5.
J Infect Dis ; 228(8): 1108-1118, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37556724

ABSTRACT

Shigella represents a paraphyletic group of enteroinvasive Escherichia coli. More than 40 Shigella serotypes have been reported. However, most cases within the men who have sex with men (MSM) community are attributed to 3 serotypes: Shigella sonnei unique serotype and Shigella flexneri 2a and 3a serotypes. Using the zebrafish model, we demonstrate that Shigella can establish persistent infection in vivo. Bacteria are not cleared by the immune system and become antibiotic tolerant. Establishment of persistent infection depends on the O-antigen, a key constituent of the bacterial surface and a serotype determinant. Representative isolates associated with MSM transmission persist in zebrafish, while representative isolates of a serotype not associated with MSM transmission do not. Isolates of a Shigella serotype establishing persistent infections elicited significantly less macrophage death in vivo than isolates of a serotype unable to persist. We conclude that zebrafish are a valuable platform to illuminate factors underlying establishment of Shigella persistent infection in humans.


Subject(s)
Dysentery, Bacillary , Sexual and Gender Minorities , Shigella , Humans , Male , Animals , Zebrafish , Serogroup , Homosexuality, Male , Persistent Infection , Dysentery, Bacillary/microbiology , Shigella flexneri
6.
mBio ; 14(4): e0088223, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37255304

ABSTRACT

Enteroinvasive Escherichia coli (EIEC) and Shigella are closely related agents of bacillary dysentery. It is widely viewed that EIEC and Shigella species evolved from E. coli via independent acquisitions of a large virulence plasmid (pINV) encoding a type 3 secretion system (T3SS). Sequence Type (ST)99 O96:H19 E. coli is a novel clone of EIEC responsible for recent outbreaks in Europe and South America. Here, we use 92 whole genome sequences to reconstruct a dated phylogeny of ST99 E. coli, revealing distinct phylogenomic clusters of pINV-positive and -negative isolates. To study the impact of pINV acquisition on the virulence of this clone, we developed an EIEC-zebrafish infection model showing that virulence of ST99 EIEC is thermoregulated. Strikingly, zebrafish infection using a T3SS-deficient ST99 EIEC strain and the oldest available pINV-negative isolate reveals a separate, temperature-independent mechanism of virulence, indicating that ST99 non-EIEC strains were virulent before pINV acquisition. Taken together, these results suggest that an already pathogenic E. coli acquired pINV and that virulence of ST99 isolates became thermoregulated once pINV was acquired. IMPORTANCE Enteroinvasive Escherichia coli (EIEC) and Shigella are etiological agents of bacillary dysentery. Sequence Type (ST)99 is a clone of EIEC hypothesized to cause human disease by the recent acquisition of pINV, a large plasmid encoding a type 3 secretion system (T3SS) that confers the ability to invade human cells. Using Bayesian analysis and zebrafish larvae infection, we show that the virulence of ST99 EIEC isolates is highly dependent on temperature, while T3SS-deficient isolates encode a separate temperature-independent mechanism of virulence. These results indicate that ST99 non-EIEC isolates may have been virulent before pINV acquisition and highlight an important role of pINV acquisition in the dispersal of ST99 EIEC in humans, allowing wider dissemination across Europe and South America.


Subject(s)
Dysentery, Bacillary , Escherichia coli Infections , Shigella , Animals , Humans , Escherichia coli , Virulence/genetics , Zebrafish , Type III Secretion Systems/genetics , Bayes Theorem , Temperature , Plasmids/genetics , Shigella/genetics
7.
Cytoskeleton (Hoboken) ; 80(7-8): 266-274, 2023.
Article in English | MEDLINE | ID: mdl-36855298

ABSTRACT

Septins are evolutionarily conserved GTP-binding proteins known for their roles in cell division and host defence against Shigella infection. Although septin group members are viewed to function as hetero-oligomeric complexes, the role of individual septins within these complexes or in isolation is poorly understood. Decades of work using mouse models has shown that some septins (including SEPT7) are essential for animal development, while others (including SEPT6) are dispensable, suggesting that some septins may compensate for the absence of others. The zebrafish genome encodes 19 septin genes, representing the full complement of septin groups described in mice and humans. In this report, we characterise null mutants for zebrafish Sept6 (a member of the SEPT6 group) and Sept15 (a member of the SEPT7 group) and test their role in zebrafish development and host defence against Shigella infection. We show that null mutants for Sept6 and Sept15 are both viable, and that expression of other zebrafish septins are not significantly affected by their mutation. Consistent with previous reports using knockdown of Sept2, Sept7b, and Sept15, we show that Sept6 and Sept15 are required for host defence against Shigella infection. These results highlight Shigella infection of zebrafish as a powerful system to study the role of individual septins in vivo.


Subject(s)
Dysentery, Bacillary , Septins , Animals , Dysentery, Bacillary/genetics , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Septins/genetics , Septins/metabolism , Zebrafish/genetics , Zebrafish/metabolism
8.
ACS Synth Biol ; 12(3): 709-721, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36802585

ABSTRACT

The discovery of clustered, regularly interspaced, short palindromic repeats (CRISPR) and the Cas9 RNA-guided nuclease provides unprecedented opportunities to selectively kill specific populations or species of bacteria. However, the use of CRISPR-Cas9 to clear bacterial infections in vivo is hampered by the inefficient delivery of cas9 genetic constructs into bacterial cells. Here, we use a broad-host-range P1-derived phagemid to deliver the CRISPR-Cas9 chromosomal-targeting system into Escherichia coli and the dysentery-causing Shigella flexneri to achieve DNA sequence-specific killing of targeted bacterial cells. We show that genetic modification of the helper P1 phage DNA packaging site (pac) significantly enhances the purity of packaged phagemid and improves the Cas9-mediated killing of S. flexneri cells. We further demonstrate that P1 phage particles can deliver chromosomal-targeting cas9 phagemids into S. flexneri in vivo using a zebrafish larvae infection model, where they significantly reduce the bacterial load and promote host survival. Our study highlights the potential of combining P1 bacteriophage-based delivery with the CRISPR chromosomal-targeting system to achieve DNA sequence-specific cell lethality and efficient clearance of bacterial infection.


Subject(s)
Anti-Infective Agents , CRISPR-Cas Systems , CRISPR-Cas Systems/genetics , Gene Editing , Bacteriophage P1/genetics , Zebrafish/genetics , Shigella flexneri/genetics , Animals
9.
Cytoskeleton (Hoboken) ; 80(7-8): 254-265, 2023.
Article in English | MEDLINE | ID: mdl-35460543

ABSTRACT

Apoptosis is a form of regulated cell death essential for tissue homeostasis and embryonic development. Apoptosis also plays a key role during bacterial infection, yet some intracellular bacterial pathogens (such as Shigella flexneri, whose lipopolysaccharide can block apoptosis) can manipulate cell death programs as an important survival strategy. Septins are a component of the cytoskeleton essential for mitochondrial dynamics and host defense, however, the role of septins in regulated cell death is mostly unknown. Here, we discover that septins promote mitochondrial (i.e., intrinsic) apoptosis in response to treatment with staurosporine (a pan-kinase inhibitor) or etoposide (a DNA topoisomerase inhibitor). Consistent with a role for septins in mitochondrial dynamics, septins promote the release of mitochondrial protein cytochrome c in apoptotic cells and are required for the proteolytic activation of caspase-3, caspase-7, and caspase-9 (core components of the apoptotic machinery). Apoptosis of HeLa cells induced in response to infection by S. flexneri ΔgalU (a lipopolysaccharide mutant unable to block apoptosis) is also septin-dependent. In vivo, zebrafish larvae are significantly more susceptible to infection with S. flexneri ΔgalU (as compared to infection with wildtype S. flexneri), yet septin deficient larvae are equally susceptible to infection with S. flexneri ΔgalU and wildtype S. flexneri. These data provide a new molecular framework to understand the complexity of mitochondrial apoptosis and its ability to combat bacterial infection.

12.
Cell Rep ; 35(2): 109000, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33852860

ABSTRACT

Chemotaxis and lysosomal function are closely intertwined processes essential for the inflammatory response and clearance of intracellular bacteria. We used the zebrafish model to examine the link between chemotactic signaling and lysosome physiology in macrophages during mycobacterial infection and wound-induced inflammation in vivo. Macrophages from zebrafish larvae carrying a mutation in a chemokine receptor of the Cxcr3 family display upregulated expression of vesicle trafficking and lysosomal genes and possess enlarged lysosomes that enhance intracellular bacterial clearance. This increased microbicidal capacity is phenocopied by inhibiting the lysosomal transcription factor EC, while its overexpression counteracts the protective effect of chemokine receptor mutation. Tracking macrophage migration in zebrafish revealed that lysosomes of chemokine receptor mutants accumulate in the front half of cells, preventing macrophage polarization during chemotaxis and reaching sites of inflammation. Our work shows that chemotactic signaling affects the bactericidal properties and localization during chemotaxis, key aspects of the inflammatory response.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Lysosomes/immunology , Macrophages/immunology , Mycobacterium Infections/genetics , Receptors, CXCR3/genetics , Signal Transduction/immunology , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Animals, Genetically Modified , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/immunology , Cell Tracking , Chemotaxis/genetics , Chemotaxis/immunology , Embryo, Nonmammalian , Gene Expression Profiling , Gene Expression Regulation , Genes, Reporter , Larva/immunology , Larva/microbiology , Luminescent Proteins/genetics , Luminescent Proteins/immunology , Lysosomes/metabolism , Lysosomes/microbiology , Lysosomes/ultrastructure , Macrophage Activation , Macrophages/microbiology , Macrophages/ultrastructure , Mutation , Mycobacterium Infections/immunology , Mycobacterium Infections/microbiology , Mycobacterium marinum/immunology , Mycobacterium marinum/pathogenicity , Receptors, CXCR3/immunology , Sequence Analysis, RNA , Signal Transduction/genetics , Zebrafish/immunology , Zebrafish/microbiology , Zebrafish Proteins/immunology , Red Fluorescent Protein
13.
Nat Commun ; 11(1): 6172, 2020 12 02.
Article in English | MEDLINE | ID: mdl-33268772

ABSTRACT

Zebrafish embryos provide a unique opportunity to visualize complex biological processes, yet conventional imaging modalities are unable to access intricate biomolecular information without compromising the integrity of the embryos. Here, we report the use of confocal Raman spectroscopic imaging for the visualization and multivariate analysis of biomolecular information extracted from unlabeled zebrafish embryos. We outline broad applications of this method in: (i) visualizing the biomolecular distribution of whole embryos in three dimensions, (ii) resolving anatomical features at subcellular spatial resolution, (iii) biomolecular profiling and discrimination of wild type and ΔRD1 mutant Mycobacterium marinum strains in a zebrafish embryo model of tuberculosis and (iv) in vivo temporal monitoring of the wound response in living zebrafish embryos. Overall, this study demonstrates the application of confocal Raman spectroscopic imaging for the comparative bimolecular analysis of fully intact and living zebrafish embryos.


Subject(s)
Embryo, Nonmammalian/ultrastructure , Molecular Imaging/methods , Spectrum Analysis, Raman/methods , Time-Lapse Imaging/methods , Zebrafish/anatomy & histology , Animals , Animals, Genetically Modified , Embryo, Nonmammalian/metabolism , Molecular Imaging/instrumentation , Multivariate Analysis , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium Infections, Nontuberculous/pathology , Mycobacterium marinum/growth & development , Mycobacterium marinum/pathogenicity , Spectrum Analysis, Raman/instrumentation , Time-Lapse Imaging/instrumentation , Wound Healing/physiology , Zebrafish/growth & development , Zebrafish/metabolism
15.
Cell Death Dis ; 11(4): 277, 2020 04 24.
Article in English | MEDLINE | ID: mdl-32332700

ABSTRACT

DNA damage regulated autophagy modulator 1 (DRAM1) is a stress-inducible regulator of autophagy and cell death. DRAM1 has been implicated in cancer, myocardial infarction, and infectious diseases, but the molecular and cellular functions of this transmembrane protein remain poorly understood. Previously, we have proposed DRAM1 as a host resistance factor for tuberculosis (TB) and a potential target for host-directed anti-infective therapies. In this study, we generated a zebrafish dram1 mutant and investigated its loss-of-function effects during Mycobacterium marinum (Mm) infection, a widely used model in TB research. In agreement with previous knockdown analysis, dram1 mutation increased the susceptibility of zebrafish larvae to Mm infection. RNA sequencing revealed major effects of Dram1 deficiency on metabolic, immune response, and cell death pathways during Mm infection, and only minor effects on proteinase and metabolic pathways were found under uninfected conditions. Furthermore, unchallenged dram1 mutants did not display overt autophagic defects, but autophagic targeting of Mm was reduced in the absence of Dram1. The phagocytic ability of macrophages in dram1 mutants was unaffected, but acidification of Mm-containing vesicles was strongly reduced, indicating that Dram1 is required for phagosome maturation. By in vivo imaging, we observed that Dram1-deficient macrophages fail to restrict Mm during early stages of infection. The resulting increase in bacterial burden could be reverted by knockdown of inflammatory caspase a (caspa) and gasdermin Eb (gsdmeb), demonstrating pyroptosis as the mechanism underlying premature cell death of Mm-infected macrophages in dram1 mutants. Collectively, these data demonstrate that dissemination of mycobacterial infection in zebrafish larvae is promoted in the absence of Dram1 due to reduced maturation of mycobacteria-containing vesicles, failed intracellular containment, and consequent pyroptotic death of infected macrophages. These results provide new evidence that Dram1 plays a central role in host resistance to intracellular infection, acting at the crossroad of autophagy and cell death.


Subject(s)
Autophagy/genetics , Macrophages/metabolism , Membrane Proteins/deficiency , Mycobacterium Infections, Nontuberculous/metabolism , Pyroptosis/genetics , Tuberculosis/genetics , Animals , Cell Death , Humans , Zebrafish
16.
Front Immunol ; 11: 325, 2020.
Article in English | MEDLINE | ID: mdl-32161595

ABSTRACT

Phagocytes are highly motile immune cells that ingest and clear microbial invaders, harmful substances, and dying cells. Their function is critically dependent on the expression of chemokine receptors, a class of G-protein-coupled receptors (GPCRs). Chemokine receptors coordinate the recruitment of phagocytes and other immune cells to sites of infection and damage, modulate inflammatory and wound healing responses, and direct cell differentiation, proliferation, and polarization. Besides, a structurally diverse group of atypical chemokine receptors (ACKRs) are unable to signal in G-protein-dependent fashion themselves but can shape chemokine gradients by fine-tuning the activity of conventional chemokine receptors. The optically transparent zebrafish embryos and larvae provide a powerful in vivo system to visualize phagocytes during development and study them as key elements of the immune response in real-time. In this review, we discuss how the zebrafish model has furthered our understanding of the role of two main classes of chemokine receptors, the CC and CXC subtypes, in phagocyte biology. We address the roles of the receptors in the migratory properties of phagocytes in zebrafish models for cancer, infectious disease, and inflammation. We illustrate how studies in zebrafish enable visualizing the contribution of chemokine receptors and ACKRs in shaping self-generated chemokine gradients of migrating cells. Taking the functional antagonism between two paralogs of the CXCR3 family as an example, we discuss how the duplication of chemokine receptor genes in zebrafish poses challenges, but also provides opportunities to study sub-functionalization or loss-of-function events. We emphasize how the zebrafish model has been instrumental to prove that the major determinant for the functional outcome of a chemokine receptor-ligand interaction is the cell-type expressing the receptor. Finally, we highlight relevant homologies and analogies between mammalian and zebrafish phagocyte function and discuss the potential of zebrafish models to further advance our understanding of chemokine receptors in innate immunity and disease.


Subject(s)
Phagocytes/metabolism , Receptors, Chemokine/immunology , Receptors, Chemokine/metabolism , Zebrafish/immunology , Animals , Humans , Immunity, Innate , Inflammation/immunology , Macrophages/immunology , Neoplasms/immunology , Wounds and Injuries/immunology
17.
Sci Rep ; 10(1): 3149, 2020 02 21.
Article in English | MEDLINE | ID: mdl-32081863

ABSTRACT

We describe new open source software called QuantiFish for rapid quantitation of fluorescent foci in zebrafish larvae, to support infection research in this animal model. QuantiFish extends the conventional measurements of bacterial load and number of bacterial foci to include measures for dissemination of infection. These are represented by the proportions of bacteria between foci and their spatial distribution. We showcase these measures by comparison of intravenous and hindbrain routes of Mycobacterium marinum infection, which are indistinguishable by measurement of bacterial load and not consistently differentiated by the number of bacterial foci. The intravenous route showed dose dependent dissemination of infection, reflected by increased spatial dispersion of bacteria and lower proportions of bacteria distributed across many foci. In contrast, hindbrain infection resulted in localised disease, limited to a smaller area and higher proportions of bacteria distributed across fewer foci. The application of QuantiFish may extend beyond models of infection, to study other pathologies such as metastatic cancer.


Subject(s)
Larva/microbiology , Microscopy, Fluorescence/methods , Rhombencephalon/microbiology , Zebrafish/embryology , Animals , Bacterial Load , Disease Models, Animal , Host-Pathogen Interactions , Image Processing, Computer-Assisted , Mycobacterium Infections, Nontuberculous , Mycobacterium marinum , Pattern Recognition, Automated , Software
18.
J Leukoc Biol ; 107(2): 185-203, 2020 02.
Article in English | MEDLINE | ID: mdl-31529512

ABSTRACT

The CXCR3-CXCL11 chemokine-signaling axis plays an essential role in infection and inflammation by orchestrating leukocyte trafficking in human and animal models, including zebrafish. Atypical chemokine receptors (ACKRs) play a fundamental regulatory function in signaling networks by shaping chemokine gradients through their ligand scavenging function, while being unable to signal in the classic G-protein-dependent manner. Two copies of the CXCR3 gene in zebrafish, cxcr3.2 and cxcr3.3, are expressed on macrophages and share a highly conserved ligand-binding site. However, Cxcr3.3 has structural characteristics of ACKRs indicative of a ligand-scavenging role. In contrast, we previously showed that Cxcr3.2 is an active CXCR3 receptor because it is required for macrophage motility and recruitment to sites of mycobacterial infection. In this study, we generated a cxcr3.3 CRISPR-mutant to functionally dissect the antagonistic interplay among the cxcr3 paralogs in the immune response. We observed that cxcr3.3 mutants are more susceptible to mycobacterial infection, whereas cxcr3.2 mutants are more resistant. Furthermore, macrophages in the cxcr3.3 mutant are more motile, show higher activation status, and are recruited more efficiently to sites of infection or injury. Our results suggest that Cxcr3.3 is an ACKR that regulates the activity of Cxcr3.2 by scavenging common ligands and that silencing the scavenging function of Cxcr3.3 results in an exacerbated Cxcr3.2 signaling. In human, splice variants of CXCR3 have antagonistic functions and CXCR3 ligands also interact with ACKRs. Therefore, in zebrafish, an analogous regulatory mechanism appears to have evolved after the cxcr3 gene duplication event, through diversification of conventional and atypical receptor variants.


Subject(s)
Cell Movement , Macrophages/physiology , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium marinum/physiology , Receptors, CXCR3/metabolism , Zebrafish Proteins/metabolism , Zebrafish/physiology , Animals , CRISPR-Cas Systems , Macrophages/cytology , Macrophages/microbiology , Mutation , Mycobacterium Infections, Nontuberculous/metabolism , Mycobacterium Infections, Nontuberculous/pathology , Protein Conformation , Receptors, CXCR3/antagonists & inhibitors , Receptors, CXCR3/classification , Receptors, CXCR3/genetics , Zebrafish/microbiology , Zebrafish Proteins/antagonists & inhibitors , Zebrafish Proteins/genetics
19.
PLoS Pathog ; 15(12): e1008006, 2019 12.
Article in English | MEDLINE | ID: mdl-31830135

ABSTRACT

Shigella flexneri is historically regarded as the primary agent of bacillary dysentery, yet the closely-related Shigella sonnei is replacing S. flexneri, especially in developing countries. The underlying reasons for this dramatic shift are mostly unknown. Using a zebrafish (Danio rerio) model of Shigella infection, we discover that S. sonnei is more virulent than S. flexneri in vivo. Whole animal dual-RNAseq and testing of bacterial mutants suggest that S. sonnei virulence depends on its O-antigen oligosaccharide (which is unique among Shigella species). We show in vivo using zebrafish and ex vivo using human neutrophils that S. sonnei O-antigen can mediate neutrophil tolerance. Consistent with this, we demonstrate that O-antigen enables S. sonnei to resist phagolysosome acidification and promotes neutrophil cell death. Chemical inhibition or promotion of phagolysosome maturation respectively decreases and increases neutrophil control of S. sonnei and zebrafish survival. Strikingly, larvae primed with a sublethal dose of S. sonnei are protected against a secondary lethal dose of S. sonnei in an O-antigen-dependent manner, indicating that exposure to O-antigen can train the innate immune system against S. sonnei. Collectively, these findings reveal O-antigen as an important therapeutic target against bacillary dysentery, and may explain the rapidly increasing S. sonnei burden in developing countries.


Subject(s)
Neutrophils/immunology , O Antigens/immunology , Shigella sonnei/immunology , Shigella sonnei/pathogenicity , Virulence/immunology , Animals , Dysentery, Bacillary , Humans , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...